918 research outputs found

    Charged rotating dilaton black branes in AdS universe

    Full text link
    We present the metric for the (n+1)(n+1)-dimensional charged rotating dilaton black branes with cylindrical or toroidal horizons in the background of anti-de Sitter spacetime. We find the suitable counterterm which removes the divergences of the action in the presence of the dilaton potential in all higher dimensions. We plot the Penrose diagrams of the spacetime and reveal that the spacetime geometry crucially modifies in the presence of the dilaton field. The conserved and thermodynamic quantities of the black branes are also computed.Comment: 13 pages, 3 figures, to appear in Gen. Relat. Gravi

    Thermodynamics of higher dimensional topological charged AdS black branes in dilaton gravity

    Full text link
    In this paper, we study topological AdS black branes of (n+1)(n+1)-dimensional Einstein-Maxwell-dilaton theory and investigate their properties. We use the area law, surface gravity and Gauss law interpretations to find entropy, temperature and electrical charge, respectively. We also employ the modified Brown and York subtraction method to calculate the quasilocal mass of the solutions. We obtain a Smarr-type formula for the mass as a function of the entropy and the charge, compute the temperature and the electric potential through the Smarr-type formula and show that these thermodynamic quantities coincide with their values which are calculated through using the geometry. Finally, we perform a stability analysis in the canonical ensemble and investigate the effects of the dilaton field and the size of black brane on the thermal stability of the solutions. We find that large black branes are stable but for small black brane, depending on the value of dilaton field and type of horizon, we encounter with some unstable phases.Comment: 21 pages, 21 figures, references updated, minor editing, accepted in EPJC (DOI: 10.1140/epjc/s10052-010-1483-3

    Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

    Full text link
    In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n=3). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur

    Ricci flat rotating black branes with a conformally invariant Maxwell source

    Full text link
    We consider Einstein gravity coupled to an U(1)U(1) gauge field for which the density is given by a power of the Maxwell Lagrangian. In dd-dimensions the action of Maxwell field is shown to enjoy the conformal invariance if the power is chosen as d/4d/4. We present a class of charge rotating solutions in Einstein-conformally invariant Maxwell gravity in the presence of a cosmological constant. These solutions may be interpreted as black brane solutions with inner and outer event horizons or an extreme black brane depending on the value of the mass parameter. Since we are considering power of the Maxwell density, the black brane solutions exist only for dimensions which are multiples of four. We compute conserved and thermodynamics quantities of the black brane solutions and show that the expression of the electric field does not depend on the dimension. Also, we obtain a Smarr-type formula and show that these conserved and thermodynamic quantities of black branes satisfy the first law of thermodynamics. Finally, we study the phase behavior of the rotating black branes and show that there is no Hawking--Page phase transition in spite of conformally invariant Maxwell field.Comment: 13 pages, one figur

    Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion

    Get PDF
    A comprehensive study of the energy yield from slow pyrolysis of the organic fraction of municipal solid waste (OFMSW) and energy recovery from the aqueous liquid product by anaerobic digestion has been carried out. In this paper, the results of the liquid pyrolysis product characterisation are presented, with toxicity and methane potential assessments of the aqueous liquid product. The OFMSW feedstock was obtained from a UK waste treatment plant. Shredded samples dried to different moisture contents (12.7–45.8%) were processed in a 300 g per hour auger screw pyrolysis reactor at temperatures from 450 to 850 °C. Sixteen pyrolysis runs were performed, with process mass balance closures above 90% obtained (wet feed basis). Pyrolysis liquids showed clear phase separation under gravity. With increasing processing temperature, the liquid yield (both organic and aqueous fraction) reduced but the gas yield increased. An investigation into the product energy distribution indicated that processing temperature had a strong effect on the product energy distribution, while the effect of feedstock moisture was relatively small. Batch anaerobic testing of the aqueous fraction showed that toxicity increased with pyrolysis processing temperature and decreased with feedstock moisture content. Statistical analysis confirmed that the pyrolysis processing temperature was the dominant factor affecting the toxicity of the aqueous product. Careful acclimatisation of the microbial consortium to the applied substrate and loading is likely to be necessary for improved digestion of the aqueous fraction

    Hairy black holes in theories with massive gravitons

    Get PDF
    This is a brief survey of the known black hole solutions in the theories of ghost-free bigravity and massive gravity. Various black holes exist in these theories, in particular those supporting a massive graviton hair. However, it seems that solutions which could be astrophysically relevant are the same as in General Relativity, or very close to them. Therefore, the no-hair conjecture essentially applies, and so it would be hard to detect the graviton mass by observing black holes.Comment: References added. 20 pages, 3 figures, based on the talk given at the 7-th Aegean Summer School "Beyond Einstein's theory of gravity", September 201

    Of Bounces, Branes and Bounds

    Get PDF
    Some recent studies have considered a Randall-Sundrum-like brane world evolving in the background of an anti-de Sitter Reissner-Nordstrom black hole. For this scenario, it has been shown that, when the bulk charge is non-vanishing, a singularity-free ``bounce'' universe will always be obtained. However, for the physically relevant case of a de Sitter brane world, we have recently argued that, from a holographic (c-theorem) perspective, such brane worlds may not be physically viable. In the current paper, we reconsider the validity of such models by appealing to the so-called ``causal entropy bound''. In this framework, a paradoxical outcome is obtained: these brane worlds are indeed holographically viable, provided that the bulk charge is not too small. We go on to argue that this new finding is likely the more reliable one.Comment: 15 pages, Revtex; references added and very minor change

    Pb0.4Bi1.6Sr2Ca1Cu2O8+xPb_{0.4}Bi_{1.6}Sr_{2}Ca_{1}Cu_{2}O_{8+x} and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties

    Full text link
    Pb0.4Bi1.6Sr2CaCu2O8+xPb_{0.4}Bi_{1.6}Sr_2CaCu_2O_{8+x} (Bi(Pb)Bi(Pb)-2212) single crystal samples were studied using transmission electron microscopy (TEM), abab-plane (ρab\rho_{ab}) and cc-axis (ρc\rho_c) resistivity, and high resolution angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that the modulation in the bb-axis for Pb(0.4)Pb(0.4)-doped Bi(Pb)Bi(Pb)-2212 is dominantly of PbPb-type that is not sensitive to the oxygen content of the system, and the system clearly shows a structure of orthorhombic symmetry. Oxygen annealed samples exhibit a much lower cc-axis resistivity and a resistivity minimum at 8013080-130K. He-annealed samples exhibit a much higher cc-axis resistivity and dρc/dT<0d\rho_c/dT<0 behavior below 300K. The Fermi surface (FS) of oxygen annealed Bi(Pb)Bi(Pb)-2212 mapped out by ARUPS has a pocket in the FS around the Mˉ\bar{M} point and exhibits orthorhombic symmetry. There are flat, parallel sections of the FS, about 60\% of the maximum possible along kx=kyk_x = k_y, and about 30\% along kx=kyk_x = - k_y. The wavevectors connecting the flat sections are about 0.72(π,π)0.72(\pi, \pi) along kx=kyk_x = k_y, and about 0.80(π,π)0.80(\pi, \pi) along kx=kyk_x = - k_y, rather than (π,π)(\pi,\pi). The symmetry of the near-Fermi-energy dispersing states in the normal state changes between oxygen-annealed and He-annealed samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon request. Submitted to Phys. Rev. B

    Testing Oscillating Primordial Spectrum and Oscillating Dark Energy with Astronomical Observations

    Full text link
    In this paper we revisit the issue of determining the oscillating primordial scalar power spectrum and oscillating equation of state of dark energy from the astronomical observations. By performing a global analysis with the Markov Chain Monte Carlo method, we find that the current observations from five-year WMAP and SDSS-LRG matter power spectrum, as well as the "union" supernovae sample, constrain the oscillating index of primordial spectrum and oscillating equation of state of dark energy with the amplitude less than namp<0.116|n_{\rm amp}|<0.116 and wamp<0.232|w_{\rm amp}|<0.232 at 95% confidence level, respectively. This result shows that the oscillatory structures on the primordial scalar spectrum and the equation of state of dark energy are still allowed by the current data. Furthermore, we point out that these kinds of modulation effects will be detectable (or gotten a stronger constraint) in the near future astronomical observations, such as the PLANCK satellite, LAMOST telescope and the currently ongoing supernovae projects SNLS.Comment: 7 pages, 5 figures, 1 tabe

    Rotating Black Branes in the presence of nonlinear electromagnetic field

    Full text link
    In this paper, we consider a class of gravity whose action represents itself as a sum of the usual Einstein-Hilbert action with cosmological constant and an U(1)U(1) gauge field for which the action is given by a power of the Maxwell invariant. We present a class of the rotating black branes with Ricci flat horizon and show that the presented solutions may be interpreted as black brane solutions with two event horizons, extreme black hole and naked singularity provided the parameters of the solutions are chosen suitably. We investigate the properties of the solutions and find that for the special values of the nonlinear parameter, the solutions are not asymptotically anti-deSitter. At last, we obtain the conserved quantities of the rotating black branes and find that the nonlinear source effects on the electric field, the behavior of spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ
    corecore